Á. Magyar1, MSc,

M. Kovács2, PhD-student, E-mail: monyi5@gamma.ttk.pte.hu,

G. Varga1, PhD, Adjunct Assistant Prof., E-mail: gazi@gamma.ttk.pte.hu,

B. Radvánszky3,4, PhD, Post-doctor scholarship-holder, E-mail: radberti@gamma.ttk.pte.hu,

Sz. Fábián1, PhD, Adjunct Assistant Prof., E-mail: smafu@gamma.ttk.pte.hu,

I. Kovács1, PhD, Adjunct Assistant Prof., E-mail: vonbock@gamma.ttk.pte.hu,

T. Izsák5, PhD, Senior Lecturer,

E. Płaczkowska6, PhD-student, E-mail: mateusz.sobucki@gmail.com,

Yu. Tymchenko7, Cand. Sci. (Geol.), Research Associate


1Institute of Geography, Faculty of Science, University of Pécs H-7624, 6 Ifjúság Str., Hungary,

2Doctoral School of Earth Sciences, University of Pécs H-7624, 6 Ifjúság Str., Hungary,

3Erasmus Mundus Partnership for Belarus, Ukraine and Moldova (EMP-AIM),

4Faculty of Geography, Taras Shevchenko National University of Kyiv, 2A Hluskhova Ave., Kyiv, Ukraine,

5Department of Geography, Ferenc Rákóczi II. Transcarpathian Hungarian Institute, 6 Kossuth Sq., Beregszász, Ukraine,

6Institute of Geography and Spatial Management Jagiellonian University in Krakow 730-387 Gronostajowa Str., Krakow, Poland,

7Institute of Geology, Taras Schevchenko National University of Kyiv

90 Vasylkivska Str., Kyiv, 03022 Ukraine

Man subserves to emergence of mass movements with radical changing of the natural land cover. The evolution of landslides affects plant cover and the latter reacts to further terrain development. In Hungary, recurring landslides have emerged along the Danube, the Paks-Dunakömlőd embankment representing a classic type of mass movement effects. Anthropogenic pressures and surface movements in the study area have changed the natural associations resulting in an increase in the number of invasive (Robinia pseudoacacia, Ailanthus altissima) and cosmopolitan (Sambucus nigra, S. ebulus) species. The plant survey was based on classification of zones according to habitat. The tree species were counted in 25 m2 rectangular plots, whereas for the other plants – if they were present – the distribution was estimated for different classes of the high bank. Natural woodland associations only survived on the gentler sloping areas. Mainly nitrogen-loving species have settled down at the foot of the bluff and in its gullies. The mosaic discontinuity of the grass cover becomes dominant on the upper and steeper part of the loess bank. Less undergrowth with homogenous filiform grass characterizes the areas affected by surface movements. Parallelism can be discovered here between the appearance of plant species and their number. Perennial grasses tend to appear on larger or smaller ledges or on hard-to-reach edges. The vegetation cover is rare and patchy, with loess bedrock appearing at the surface at many places. There is hardly any soil where plants root in the loess, and calcium-loving plants settle down here as well. Scarce woody plants partially obstruct the failure of bluffs. However, in the active landsliding areas, the number and the size of trees are limited. To conclude, the vegetation pattern of the study area is well suited for different height and shape classes of the bluffs.

Keywords: mass movements, high bluff, landslide, plant species, Danube, Paks.


1. Magyar Á., Fábián S.Á., Kovács I.P., Varga G., Kovács M., Radvánszky B., Sobutcki M., (2014). Analysis of recent surface development on the high bluff between paks and Dunakömlőd. Visnyk of Taras Shevchenko National University of Kyiv: Geology, 65(2), 13-18. (In Ukrainian).

2. Balogh J., Jakab G., Szalai Z., Szeberényi J., Viczián I., (2014). Omlás és csúszásveszélyes partfalak állékonyságának komplex biztosítása a dunai magaspartokon – az épített rézsűk erózióvédelme és monitorozása [Strengthening of Potentially Collapsing and Sliding Bluffs Along Danube River – Erosion Prevention and Monitoring of Artificial SCARPS]. In: Jakab G., Szalai Z. (eds.). Talajpusztulás Térben és Időben - Geographical Research Institute, Hungarian Academy of Sciences: Budapest, 66-82. (In Hungarian).

3. Bugya T., Fábián S.Á., Görcs N.L., Kovács I.P., Radvánszky B., (2011). Surface changes on a landslide affected high bluff in Dunaszekcso (Hungary). Central European Journal of Geosciences, 3(2), 119-128.

4. Collins D.B.G., Bras R.L., Tucker G.E., (2004). Modeling the effects of vegetation-erosion coupling on landscape evolution. Journal of Geophysical Research-Earth Surface, 109(F3).

5. Fábián S.Á., (2003). Geomorphological hazards of the lower reaches of Danube in Hungary. Geomorphologica Slovaka, 3(2), 77-80.

6. Fábián S.Á., Kovács J., Schweitzer F., Varga G., (2007). Natural resources and hazards in Tolna County. In: Pap N. (ed.). Tolna - a rural area in Central-Europe: regional and local development in Tolna county, Hungary. Lomart Kiadó: Pécs, 25-34.

7. Fodor T., Horváth Zs., Scheuer Gy., Schweitzer F., (1981). Dunakömlőd-Paks közötti dunai magaspart mérnökgeológiai térképezése és vizsgálata [Engineering geological mapping and analysis of a Danubian bluff between Dunakömlőd and Paks]. Földtani Közlöny, 111(2), 258-280. (In Hungarian). 8. Glade T., (2003). Landslide occurrence as a response to land use change: a review of evidence from New Zealand. CATENA, 51(3-4), 297-314.

9. Hortobágyi T., Simon T., (1981). Növényföldrajz, Társulástan és ökológia [Phytogeography, Phytosociology, Ecology]. Budapest: Tankönyvkiadó. (In Hungarian).

10. Horváth A., (1997). Löszfalak és szakadópartok növényzete [Semi-desert vegetation on loess cliffs]. In: Gábor F., Zsolt M., Ferenc H., A magyarországi élőhelyek leírása, határozója és a Nemzeti Élőhely-osztályozási Rendszer. – A Nemzeti Biodiverzitás-monitorozó Rendszer Kézikönyvei II. Természettudományi Múzeum: Budapest, 374. (In Hungarian).

11. Kevey B., (2008). Magyarország erdőtársulásai [Forest Associations of Hungary]. Tilia, 14, 3-488. (In Hungarian).

12. Lendvay G., Horváth A., (2011). Adatok a Mezőföld löszflórájához II. [Data to the loess flora of Mezőföld I.]. Kitaibelia, 15(1-2). (In Hungarian).

13. Lendvay G, Horváth A., (1994). Adatok a Mezőföld löszflórájához I [Data to the loess flora of Mezőföld I.]. Botanikai Közlemények, 81(1). (In Hungarian).

14. Lóczy D., Fábián S.Á., Schweitzer F., (2008). River action and landslides in Hungary. In: Basu S., De S.K. (eds.). Issues in Geomorphology and Environment, ABC: Kolkata, 1-15.

15. Lóczy D., Juhász Á., (1996). Hungary. In: Clifford E., Christine E.-H. (eds.). Geomorphological hazards of Europe. Elsevier: Amsterdam, 243-462.

16. Marosi S., Szilárd J., (1967). A Dunai Alföld [Danubian Lowland]. Magyarország tájföldrajza, Vol. 1., Budapest: Akadémiai Kiadó. (In Hungarian).

17. Marston R A., (2010). Geomorphology and vegetation on hillslopes: Interactions, dependencies, and feedback loops. Geomorphology, 116(3-4), 206-217.

18. Novković I., Stepić M., Živković N., Tošić R., Dragićević, S., (2013). Consequences of the River Bank Erosion in the Southern Part of the Pannonian Basin: Case Study – Serbia and the Republic of Srpska. Forum geografic, 2013, 12(1), 5-15.

19. Pécsi M., (1991). A magyarországi Duna-völgy teraszai és szintjei [Terraces and levels of the Danube valley in Hungary]. In: Pécsi M. (ed.). Geomorfológia és domborzatminősítés - Geographical Research Institute, Hungarian Academy of Sciences: Budapest, 36-47. (In Hungarian).

20. Sandu B., Sorin A., Alina V., (2009). The influence of climate on gravitational processes within the Jiu river valley: GIS applications. Central European Journal of Geosciences, 1(3), 303-311.

21. Sandu B., Török-Oance M., Vîlcea V., (2013). Deep Seated Landslides of Seciurile (Getic Piedmont, Romania) and Its Implication for the Settlement. In: Claudio M., Paolo C., Kyoji S. (eds.). Social and Economic Impact and Policies. Springer Verlag: Heidelberg, 113-119.

22. Schwarz M., Preti F., Giadrossichc F., Lehmannb P., Orb D., (2010). Quantifying the role of vegetation in slope stability: a case study in Tuscany (Italy). Ecological Engineering, 36(3), 285-291.

23. Schweitzer F., Babák K., Fábián S.Á., Görcs N.L., Kovács I.P., Pozsár V., Radvánszky B., Varga G., Varga Gy., (2012). Geomorfológia [Geomorphology]. In: Dövényi Z. (ed.). Kárpát-medence földrajza. Akadémiai Kiadó: Budapest, 247-331. (In Hungarian).

24. Szabó J., (1996). Csuszamlásos folyamatok szerepe a magyarországi tájak geomorfológiai fejlődésében [The Role of Landslides in the Geomorphological Evolution of Hungarian Landscapes]. Debrecen: Kossuth Egyetemi Kiadó, 223. (In Hungarian).

25. Visy Z., (2000). A ripa Pannonica Magyarországon [The Ripa Pannonica in Hungary]. Budapest: Akadémiai Kiadó. (In Hungarian).

26. Woigt W., Farkas S., (1996). A paksi határ növényvilága [The Flora near Paks]. Paks: Paks város Önkormányzata. (In Hungarian).